Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes

<u>Mitchell Han</u>¹, Marieke Aarts¹, Linda Groenendijk¹, Lucas Feliciano¹, Amanda Turner², Madeleine Garrett², Will Bernard², Farah Patell-Socha² & Nikolas Gaio¹

Introduction

Current OoC models for skeletal muscle tissues often require external electrodes to stimulate muscle tissue and lack perfusion for a steady influx of nutrients or pharmacological treatments. Here, we present two microphysiological systems for culturing 3D Engineered Muscle Microtissues: MUSbit[™] and Let-it-bit[™]. Both microchips have pillars designed for anchoring myofibers and a microfluidic channel for perfusion. The Let-it-bit[™] has an integrated microelectrode array for superior stimulation of 3D skeletal muscle tissue contraction *in situ*.

Mature 3D Skeletal Muscle on Chip

Successful muscle bundle formation in MUSbit[™] microchip using ioSkeletal Myocytes[™] (bit.bio)

Reaulus 4.0kV x80 LM(UL)

500un

Microfluidic 3D Culture Solutions for Muscle Tissue

	MUSbit™	Let-it-bit™
 Pillar Design for 3D Engineered Muscle Tissue 	\checkmark	\checkmark
 Microfluidic Channel for consistent and adjustable perfusion 	\checkmark	\checkmark
 Integrated Electrodes for real-time stimulation and monitoring of cell contraction 		

- Immunofluorescence staining of whole bundle at Day 5 and 14
- Robust expression of skeletal muscle marker sarcomeric alphaactinin (SAA) and Actin
- More mature cross-striated SAA⁺ myofibers at Day 14 versus Day 5

Functional Integrated Electrodes

- Successful fabrication of integrated electrodes on chip
- Functional electrodes with continuity in CV measurement
- Working region sufficient for typical muscle stimulation
- Seeding of 3D Muscle Microtissue without breaking metal lines

Muscle Microtissue Contraction after Electrical Stimulation

Proof-of-concept: Stimulation of Engineered 3D Muscle Microtissues with external electrodes

- Internally developed electrical stimulation device and software
- Microscopy-based contraction analysis (MUSCLEMOTION)*

Robust force-frequency relationship

Increased muscle performance over time

Conclusions

- Integration of functional electrodes on chip
- Generation of Engineered 3D Skeletal Muscle Microtissues using ioSkeletal Myocytes[™] on chip
- Capability for perfusion of muscle tissues
- Perfect for measuring muscle tissue contractile performance after pharmacological interventions
- Ideal for implementation of disease models

Acknowledgements

This work is part of the Moore4Medical project funded by the ECSEL Joint Undertaking under the grant number H2020-ECSEL-2019-IA-876190. All contributions from Moore4Medical's SMWP team are greatly appreciated.

www.gobiond.com

ECSEL Joint Undertaking Moore4Medical

¹ Biond Solutions B.V., Molengraaffsingel 10, 2629 JD Delft, The Netherlands

² bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, CB22 3FH UK Correspondence: m.han@biondteam.com